Перевод: с английского на все языки

со всех языков на английский

(individual subject)

  • 1 individual subject law

    Jur. droit subjectif

    English-French dictionary of law, politics, economics & finance > individual subject law

  • 2 subject

    тема глагол:
    покорять (conquer, submit, subdue, subjugate, bend, subject)
    имя существительное:
    причина (cause, reason, why, root, ground, subject)
    имя прилагательное:
    подвластный (subject, dependent, dependant)

    Англо-русский синонимический словарь > subject

  • 3 individual license

    English-Russian base dictionary > individual license

  • 4 course

    ko:s
    1) (a series (of lectures, medicines etc): I'm taking a course (of lectures) in sociology; He's having a course of treatment for his leg.) curso
    2) (a division or part of a meal: Now we've had the soup, what's (for) the next course?) plato
    3) (the ground over which a race is run or a game (especially golf) is played: a racecourse; a golf-course.) campo, pista
    4) (the path or direction in which something moves: the course of the Nile.) curso
    5) (the progress or development of events: Things will run their normal course despite the strike.) curso
    6) (a way (of action): What's the best course of action in the circumstances?) camino, modo de proceder
    - in due course
    - of course
    - off
    - on course

    1. curso
    2. plato
    first course, main course and dessert primer plato, segundo plato y postre
    3. rumbo
    of course claro / desde luego / por supuesto
    tr[kɔːs]
    1 (direction - gen) curso, dirección nombre femenino; (of ship) rumbo; (of river) curso
    3 (way of acting, plan of action) plan nombre masculino de acción, línea de acción
    what courses are open to us? ¿qué opciones tenemos?
    4 (development, progress) curso, marcha
    5 SMALLEDUCATION/SMALL (year-long) curso; (short) cursillo; (series) ciclo; (at university) carrera; (individual subject) asignatura
    6 SMALLMEDICINE/SMALL serie nombre femenino, tanda
    7 (of meal) plato
    8 SMALLSPORT/SMALL (for golf) campo; (racecourse) hipódromo; (stretch, distance) curso, recorrido
    9 (of bricks) hilada
    1 correr, fluir
    \
    SMALLIDIOMATIC EXPRESSION/SMALL
    in due course a su debido tiempo
    of course claro, desde luego, por supuesto, naturalmente
    yes, of course! ¡claro que sí!
    of course not! ¡claro que no!
    to be on course (ship, plane) seguir el rumbo 2 (plan, company, etc) ir encaminado,-a, llevar camino ( for, de)
    to be off course perder el rumbo, desviarse del rumbo
    to change course cambiar de rumbo
    to set course for poner rumbo a
    to take its course / run its course seguir su curso
    course of treatment SMALLMEDICINE/SMALL tratamiento
    first course primer plato, entrante nombre masculino
    refresher course SMALLEDUCATION/SMALL cursillo de reciclaje
    second course segundo plato
    course ['kors] vi, coursed ; coursing : correr (a toda velocidad)
    1) progress: curso m, transcurso m
    to run its course: seguir su curso
    2) direction: rumbo m (de un avión), derrota f, derrotero m (de un barco)
    3) path, way: camino m, vía f
    course of action: línea de conducta
    4) : plato m (de una cena)
    the main course: el plato principal
    5) : curso m (académico)
    6)
    of course : desde luego, por supuesto
    yes, of course!: ¡claro que sí!
    n.
    plato s.m.
    n.
    asignatura s.f.
    camino s.m.
    carrera s.f.
    corriente s.m.
    curso s.m.
    derrota s.f.
    pista s.f.
    rumbo s.m.
    sentido s.m.
    transcurso s.m.
    trayecto s.m.
    trayectoria s.f.
    v.
    correr v.
    perseguir v.

    I kɔːrs, kɔːs
    1)
    a) ( of river) curso m; ( of road) recorrido m

    the only course open to us — el único camino que tenemos, nuestra única opción

    c) ( progress) (no pl)

    in the normal course of events — normalmente, en circunstancias normales

    in o during the course of our conversation — en el curso or transcurso de nuestra conversación

    to run o take its course — seguir* su curso

    2)

    of course — claro, desde luego, por supuesto

    am I invited? - of course you are! — ¿estoy invitado? - claro or desde luego or por supuesto que sí!

    I'm not always right, of course — claro que no siempre tengo razón

    3) (Aviat, Naut) rumbo m

    to set course for — poner* rumbo a

    to go off course — desviarse* de rumbo

    4)
    a) ( Educ) curso m

    course IN/ON something — curso de/sobre algo

    to take o (BrE also) do a course — hacer* un curso

    to go on a course — ir* a hacer un curso; (before n)

    b) ( Med)
    5) ( part of a meal) plato m

    main courseplato principal or fuerte or (Ven) central

    as a o for the first course — de primer plato, de entrada

    6) ( Sport) ( racecourse) hipódromo m, pista f (de carreras); ( golf course) campo m or (CS tb) cancha f (de golf)

    to last o stay the course — ( persist to the end) aguantar hasta el final


    II
    [kɔːs]
    1. N
    1) (=route, direction) [of ship, plane] rumbo m; [of river] curso m; [of planet] órbita f

    to change course — (lit) cambiar de rumbo

    to be/go off course — (lit, fig) haberse desviado/desviarse de su rumbo

    we are on course for victory — vamos bien encaminados para la victoria

    to plot a course (for Jamaica) — trazar el rumbo (para ir a Jamaica)

    to set (a) course for — (Naut) poner rumbo a

    collision
    2) (=line of action)

    the best course would be to... — lo mejor sería...

    we have to decide on the best course of actiontenemos que decidir cuáles son las mejores medidas a tomar

    it's the only course left open to him — es la única opción que le queda

    3) (=process) curso m

    it changed the course of history/of her life — cambió el curso de la historia/de su vida

    in the normal or ordinary course of eventsnormalmente

    in the course of, in the course of my work — en el cumplimiento de mi trabajo

    in the course of conversationen el curso or transcurso de la conversación

    in or during the course of the next few days — en el curso de los próximos días

    in or during the course of the journey — durante el viaje

    to let things take or run their course — dejar que las cosas sigan su curso

    due 1., 3), event, matter 1., 5)
    4)

    of course — claro, desde luego, por supuesto, cómo no (esp LAm), sí pues (S. Cone)

    of course! I should have known — ¡pero si está claro! me lo tenía que haber imaginado

    "can I have a drink?" - "of course you can" — -¿puedo tomar algo de beber? -claro or desde luego or por supuesto que sí

    I've read about her in the papers, of course — por supuesto, la conozco de los periódicos

    of course, I may be wrong — claro que puedo estar confundido

    of course not! (answering) ¡claro que no!, ¡por supuesto que no!

    "can I go?" - "of course not or of course you can't" — -¿puedo ir? -claro que no or ni hablar or por supuesto que no

    5) (Scol, Univ) curso m

    to go on a course — ir a hacer un curso

    a course in business administration — un curso de administración de empresas

    short course — cursillo m

    course of study (gen) estudios mpl; (Univ) carrera f, estudios mpl

    to take or do a course in or on sth — hacer un curso de algo

    6) (Med) (=regimen)

    she was put on a course of steroids — le recetaron esteroides, le pusieron un tratamiento a base de esteroides

    a course of treatmentun tratamiento

    7) (Sport) (=distance) recorrido m; (=surface) pista f; (=racecourse) hipódromo m

    golf coursecampo m or (S. Cone) cancha f (de golf)

    - stay the course
    obstacle
    8) (Culin) plato m

    main course — plato m principal

    a three-course meal — una comida de tres platos

    9) (Naut) (=sail) vela f mayor
    10) (Constr) (=layer) [of bricks] hilada f
    2.
    VI [water, air] correr; [tears] rodar; [sweat] caer; (fig) [emotion] invadir

    rage/relief coursed through him — le invadió la ira/una sensación de alivio

    3.
    VT (Hunting) cazar
    4.
    CPD

    course book Nmanual m (del curso)

    course fees Nderechos mpl de matrícula

    course requirements NPLestudios previos requeridos para poder realizar determinado curso

    course work Ntrabajos mpl (para clase)

    * * *

    I [kɔːrs, kɔːs]
    1)
    a) ( of river) curso m; ( of road) recorrido m

    the only course open to us — el único camino que tenemos, nuestra única opción

    c) ( progress) (no pl)

    in the normal course of events — normalmente, en circunstancias normales

    in o during the course of our conversation — en el curso or transcurso de nuestra conversación

    to run o take its course — seguir* su curso

    2)

    of course — claro, desde luego, por supuesto

    am I invited? - of course you are! — ¿estoy invitado? - claro or desde luego or por supuesto que sí!

    I'm not always right, of course — claro que no siempre tengo razón

    3) (Aviat, Naut) rumbo m

    to set course for — poner* rumbo a

    to go off course — desviarse* de rumbo

    4)
    a) ( Educ) curso m

    course IN/ON something — curso de/sobre algo

    to take o (BrE also) do a course — hacer* un curso

    to go on a course — ir* a hacer un curso; (before n)

    b) ( Med)
    5) ( part of a meal) plato m

    main courseplato principal or fuerte or (Ven) central

    as a o for the first course — de primer plato, de entrada

    6) ( Sport) ( racecourse) hipódromo m, pista f (de carreras); ( golf course) campo m or (CS tb) cancha f (de golf)

    to last o stay the course — ( persist to the end) aguantar hasta el final


    II

    English-spanish dictionary > course

  • 5 Marey, Etienne-Jules

    [br]
    b. 5 March 1830 Beaune, France
    d. 15 May 1904 Paris, France
    [br]
    French physiologist and pioneer of chronophotography.
    [br]
    At the age of 19 Marey went to Paris to study medicine, becoming particularly interested in the problems of the circulation of the blood. In an early communication to the Académie des Sciences he described a much improved device for recording the pulse, the sphygmograph, in which the beats were recorded on a smoked plate. Most of his subsequent work was concerned with methods of recording movement: to study the movement of the horse, he used pneumatic sensors on each hoof to record traces on a smoked drum; this device became known as the Marey recording tambour. His attempts to study the wing movements of a bird in flight in the same way met with limited success since the recording system interfered with free movement. Reading in 1878 of Muybridge's work in America using sequence photography to study animal movement, Marey considered the use of photography himself. In 1882 he developed an idea first used by the astronomer Janssen: a camera in which a series of exposures could be made on a circular photographic plate. Marey's "photographic gun" was rifle shaped and could expose twelve pictures in approximately one second on a circular plate. With this device he was able to study wing movements of birds in free flight. The camera was limited in that it could record only a small number of images, and in the summer of 1882 he developed a new camera, when the French government gave him a grant to set up a physiological research station on land provided by the Parisian authorities near the Porte d'Auteuil. The new design used a fixed plate, on which a series of images were recorded through a rotating shutter. Looking rather like the results provided by a modern stroboscope flash device, the images were partially superimposed if the subject was slow moving, or separated if it was fast. His human subjects were dressed all in white and moved against a black background. An alternative was to dress the subject in black, with highly reflective strips and points along limbs and at joints, to produce a graphic record of the relationships of the parts of the body during action. A one-second-sweep timing clock was included in the scene to enable the precise interval between exposures to be assessed. The fixed-plate cameras were used with considerable success, but the number of individual records on each plate was still limited. With the appearance of Eastman's Kodak roll-film camera in France in September 1888, Marey designed a new camera to use the long rolls of paper film. He described the new apparatus to the Académie des Sciences on 8 October 1888, and three weeks later showed a band of images taken with it at the rate of 20 per second. This camera and its subsequent improvements were the first true cinematographic cameras. The arrival of Eastman's celluloid film late in 1889 made Marey's camera even more practical, and for over a decade the Physiological Research Station made hundreds of sequence studies of animals and humans in motion, at rates of up to 100 pictures per second. Marey pioneered the scientific study of movement using film cameras, introducing techniques of time-lapse, frame-by-frame and slow-motion analysis, macro-and micro-cinematography, superimposed timing clocks, studies of airflow using smoke streams, and other methods still in use in the 1990s. Appointed Professor of Natural History at the Collège de France in 1870, he headed the Institut Marey founded in 1898 to continue these studies. After Marey's death in 1904, the research continued under the direction of his associate Lucien Bull, who developed many new techniques, notably ultra-high-speed cinematography.
    [br]
    Principal Honours and Distinctions
    Foreign member of the Royal Society 1898. President, Académie des Sciences 1895.
    Bibliography
    1860–1904, Comptes rendus de l'Académie des Sciences de Paris.
    1873, La Machine animale, Paris 1874, Animal Mechanism, London.
    1893, Die Chronophotographie, Berlin. 1894, Le Mouvement, Paris.
    1895, Movement, London.
    1899, La Chronophotographie, Paris.
    Further Reading
    ——1992, Muybridge and the Chronophotographers, London. Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris.
    BC / MG

    Biographical history of technology > Marey, Etienne-Jules

  • 6 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 7 Lippman, Gabriel

    [br]
    b. 16 August 1845 Hallerick, Luxembourg
    d. 14 July 1921 at sea, in the North Atlantic
    [br]
    French physicist who developed interference colour photography.
    [br]
    Born of French parents, Lippman's work began with a distinguished career in classics, philosophy, mathematics and physics at the Ecole Normale in Luxembourg. After further studies in physics at Heidelberg University, he returned to France and the Sorbonne, where he was in 1886 appointed Director of Physics. He was a leading pioneer in France of research into electricity, optics, heat and other branches of physics.
    In 1886 he conceived the idea of recording the existence of standing waves in light when it is reflected back on itself, by photographing the colours so produced. This required the production of a photographic emulsion that was effectively grainless: the individual silver halide crystals had to be smaller than the shortest wavelength of light to be recorded. Lippman succeeded in this and in 1891 demonstrated his process. A glass plate was coated with a grainless emulsion and held in a special plate-holder, glass towards the lens. The back of the holder was filled with mercury, which provided a perfect reflector when in contact with the emulsion. The standing waves produced during the exposure formed laminae in the emulsion, with the number of laminae being determined by the wavelength of the incoming light at each point on the image. When the processed plate was viewed under the correct lighting conditions, a theoretically exact reproduction of the colours of the original subject could be seen. However, the Lippman process remained a beautiful scientific demonstration only, since the ultra-fine-grain emulsion was very slow, requiring exposure times of over 10,000 times that of conventional negative material. Any method of increasing the speed of the emulsion also increased the grain size and destroyed the conditions required for the process to work.
    [br]
    Principal Honours and Distinctions
    Royal Photographic Society Progress Medal 1897. Nobel Prize (for his work in interference colour photography) 1908.
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    Brian Coe, 1978, Colour Photography: The First Hundred Years, London. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lippman, Gabriel

  • 8 Bacon, Francis Thomas

    SUBJECT AREA: Aerospace
    [br]
    b. 21 December 1904 Billericay, England
    d. 24 May 1992 Little Shelford, Cambridge, England
    [br]
    English mechanical engineer, a pioneer in the modern phase of fuel-cell development.
    [br]
    After receiving his education at Eton and Trinity College, Cambridge, Bacon served with C.A. Parsons at Newcastle upon Tyne from 1925 to 1940. From 1946 to 1956 he carried out research on Hydrox fuel cells at Cambridge University and was a consultant on fuel-cell design to a number of organizations throughout the rest of his life.
    Sir William Grove was the first to observe that when oxygen and hydrogen were supplied to platinum electrodes immersed in sulphuric acid a current was produced in an external circuit, but he did not envisage this as a practical source of electrical energy. In the 1930s Bacon started work to develop a hydrogen-oxygen fuel cell that operated at moderate temperatures and pressures using an alkaline electrolyte. In 1940 he was appointed to a post at King's College, London, and there, with the support of the Admiralty, he started full-time experimental work on fuel cells. His brief was to produce a power source for the propulsion of submarines. The following year he was posted as a temporary experimental officer to the Anti-Submarine Experimental Establishment at Fairlie, Ayrshire, and he remained there until the end of the Second World War.
    In 1946 he joined the Department of Chemical Engineering at Cambridge, receiving a small amount of money from the Electrical Research Association. Backing came six years later from the National Research and Development Corporation (NRDC), the development of the fuel cell being transferred to Marshalls of Cambridge, where Bacon was appointed Consultant.
    By 1959, after almost twenty years of individual effort, he was able to demonstrate a 6 kW (8 hp) power unit capable of driving a small truck. Bacon appreciated that when substantial power was required over long periods the hydrogen-oxygen fuel cell associated with high-pressure gas storage would be more compact than conventional secondary batteries.
    The development of the fuel-cell system pioneered by Bacon was stimulated by a particular need for a compact, lightweight source of power in the United States space programme. Electro-chemical generators using hydrogen-oxygen cells were chosen to provide the main supplies on the Apollo spacecraft for landing on the surface of the moon in 1969. An added advantage of the cells was that they simultaneously provided water. NRDC was largely responsible for the forma-tion of Energy Conversion Ltd, a company that was set up to exploit Bacon's patents and to manufacture fuel cells, and which was supported by British Ropes Ltd, British Petroleum and Guest, Keen \& Nettlefold Ltd at Basingstoke. Bacon was their full-time consultant. In 1971 Energy Conversion's operation was moved to the UK Atomic Energy Research Establishment at Harwell, as Fuel Cells Ltd. Bacon remained with them until he retired in 1973.
    [br]
    Principal Honours and Distinctions
    OBE 1967. FRS 1972. Royal Society S.G. Brown Medal 1965. Royal Aeronautical Society British Silver Medal 1969.
    Bibliography
    27 February 1952, British patent no. 667,298 (hydrogen-oxygen fuel cell). 1963, contribution in W.Mitchell (ed.), Fuel Cells, New York, pp. 130–92.
    1965, contribution in B.S.Baker (ed.), Hydrocarbon Fuel Cell Technology, New York, pp. 1–7.
    Further Reading
    Obituary, 1992, Daily Telegraph (8 June).
    A.McDougal, 1976, Fuel Cells, London (makes an acknowledgement of Bacon's contribution to the design and application of fuel cells).
    D.P.Gregory, 1972, Fuel Cells, London (a concise introduction to fuel-cell technology).
    GW

    Biographical history of technology > Bacon, Francis Thomas

  • 9 Brennan, Louis

    [br]
    b. 28 January 1852 Castlebar, Ireland
    d. 17 January 1932 Montreux, Switzerland
    [br]
    Irish inventor of the Brennan dirigible torpedo, and of a gyroscopically balanced monorail system.
    [br]
    The Brennan family, including Louis, emigrated to Australia in 1861. He was an inventive genius from childhood, and while at Melbourne invented his torpedo. Within it were two drums, each with several miles of steel wire coiled upon it and mounted on one of two concentric propeller shafts. The propellers revolved in opposite directions. Wires were led out of the torpedo to winding drums on land, driven by high-speed steam engines: the faster the drums on shore were driven, the quicker the wires were withdrawn from the drums within the torpedo and the quicker the propellers turned. A steering device was operated by altering the speeds of the wires relative to one another. As finally developed, Brennan torpedoes were accurate over a range of 1 1/2 miles (2.4 km), in contrast to contemporary self-propelled torpedoes, which were unreliable at ranges over 400 yards (366 in).
    Brennan moved to England in 1880 and sold the rights to his torpedo to the British Government for a total of £110,000, probably the highest payment ever made by it to an individual inventor. Brennan torpedoes became part of the defences of many vital naval ports, but never saw active service: improvement of other means of defence meant they were withdrawn in 1906. By then Brennan was deeply involved in the development of his monorail. The need for a simple and cheap form of railway had been apparent to him when in Australia and he considered it could be met by a ground-level monorail upon which vehicles would be balanced by gyroscopes. After overcoming many manufacturing difficulties, he demonstrated first a one-eighth scale version and then a full-size, electrically driven vehicle, which ran on its single rail throughout the summer of 1910 in London, carrying up to fifty passengers at a time. Development had been supported financially by, successively, the War Office, the India Office and the Government of the Indian state of Jammu and Kashmir, which had no rail access; despite all this, however, no further financial support, government or commercial, was forthcoming.
    Brennan made many other inventions, worked on the early development of helicopters and in 1929 built a gyroscopically balanced, two-wheeled motor car which, however, never went into production.
    [br]
    Principal Honours and Distinctions
    Companion of the Bath 1892.
    Bibliography
    1878, British patent no. 3359 (torpedo) 1903, British patent no. 27212 (stability mechanisms).
    Further Reading
    R.E.Wilkes, 1973, Louis Brennan CB, 2 parts, Gillingham (Kent) Public Library. J.R.Day and B.C.Wilson, 1957, Unusual Railways, London: F.Muller.
    PJGR

    Biographical history of technology > Brennan, Louis

  • 10 Champion, Nehemiah

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 probably Bristol, England
    d. 9 September 1747 probably Bristol, England
    [br]
    English merchant and brass manufacturer of Bristol.
    [br]
    Several members of Champion's Quaker family were actively engaged as merchants in Bristol during the late seventeenth and the eighteenth centuries. Port records show Nehemiah in receipt of Cornish copper ore at Bristol's Crews Hole smelting works by 1706, in association with the newly formed brassworks of the city. He later became a leading partner, managing the company some time after Abraham Darby left the Bristol works to pursue his interest at Coalbrookdale. Champion, probably in company with his father, became the largest customer for Darby's Coalbrookdale products and also acted as Agent, at least briefly, for Thomas Newcomen.
    A patent in 1723 related to two separate innovations introduced by the brass company.
    The first improved the output of brass by granulating the copper constituent and increasing its surface area. A greater proportion of zinc vapour could permeate the granules compared with the previous practice, resulting in the technique being adopted generally in the cementation process used at the time. The latter part of the same patent introduced a new type of coal-fired furnace which facilitated annealing in bulk so replacing the individual processing of pieces. The principle of batch annealing was generally adopted, although the type of furnace was later improved. A further patent, in 1739, in the name of Nehemiah, concerned overshot water-wheels possibly intended for use in conjunction with the Newcomen atmospheric pumping engine employed for recycling water by his son William.
    Champion's two sons, John and William, and their two sons, both named John, were all concerned with production of non-ferrous metals and responsible for patented innovations. Nehemiah, shortly before his death, is believed to have partnered William at the Warmley works to exploit his son's new patent for producing metallic zinc.
    [br]
    Bibliography
    1723, British patent no. 454 (granulated copper technique and coal-fired furnace). 1739, British patent no. 567 (overshot water-wheels).
    Further Reading
    A.Raistrick, 1950, Quakers in Science and Industry, London: Bannisdale Press (for the Champion family generally).
    J.Day, 1973, Bristol Brass, a History of the Industry, Newton Abbot: David \& Charles (for the industrial activities of Nehemiah).
    JD

    Biographical history of technology > Champion, Nehemiah

  • 11 Dallos, Joseph

    [br]
    b. 1906 Budapest, Hungary
    d. 27 June 1979 London, England
    [br]
    Hungarian ophthalmologist and contact-lens specialist who pioneered the technique of individually fitted moulded-glass contact lenses.
    [br]
    Dallos graduated from the University of Budapest in 1929 and almost at once specialized in contact-lens work and was appointed Assistant Professor. At that time the fitting of lenses was and had been, since their inception c.1885, a matter of trial and error. He developed a method of taking a moulding of the surface of the eye and then producing a blown-glass lens to this shape. His work was based on a concept of corneal physiology and the need to maintain its normal respiration and metabolism.
    In 1937 he was invited to England to set up a centre in London making these innovations available. During the Second World War he worked in collaboration with the services and their special needs, and at its conclusion was invited to work at Moorfields Eye Hospital and later at the Western Opthalmic Hospital. Although plastic materials have now superseded Dallos's technology, the fundamental basis of his work remains relevant.
    [br]
    Bibliography
    1933, "Über Haftgläser und Kontaktschalen", Klin. med. Augenheilk. 1937, "The individual fitting of contact lenses", Trans. Ophth. Soc. UK. 1930–37, Papers in the Klinische Monatsblätter fur Augenheilkunde.
    Further Reading
    S.Duke-Elder, 1970, System of Ophthalmology, Vol. 5, London.
    MG

    Biographical history of technology > Dallos, Joseph

  • 12 Dawson, William

    SUBJECT AREA: Textiles
    [br]
    b. mid-eighteenth century
    d. c.1805 London, England
    [br]
    English inventor of the notched wheel for making patterns on early warp knitting machines.
    [br]
    William Dawson, a Leicester framework knitter, made an important addition to William Lee's knitting machine with his invention of the notched wheel in 1791. Lee's machine could make only plain knitting; to be able to knit patterns, there had to be some means of mechanically selecting and operating, independently of all the others, any individual thread, needle, lever or bar at work in the machine. This was partly achieved when Dawson devised a wheel that was irregularly notched on its edge and which, when rotated, pushed sprung bars, which in turn operated on the needles or other parts of the recently invented warp knitting machines. He seems to have first applied the idea for the knitting of military sashes, but then found it could be adapted to plait stay laces with great rapidity. With the financial assistance of two Leicester manufacturers and with his own good mechanical ability, Dawson found a way of cutting his wheels. However, the two financiers withdrew their support because he did not finish the design on time, although he was able to find a friend in a Nottingham architect, Mr Gregory, who helped him to obtain the patent. A number of his machines were set up in Nottingham but, like many other geniuses, he squandered his money away. When the patent expired, he asked Lord Chancellor Eldon to have it renewed: he moved his workshop to London, where Eldon inspected his machine, but the patent was not extended and in consequence Dawson committed suicide.
    [br]
    Bibliography
    1791, British patent no. 1,820 (notched wheel for knitting machine).
    Further Reading
    W.Felkin, 1867, History of Machine-Wrought Hosiery and Lace Manufacture (covers Dawson's invention).
    W.English, 1969, The Textile Industry, London (provides an outline history of the development of knitting machines).
    RLH

    Biographical history of technology > Dawson, William

  • 13 Ducos du Hauron, Arthur-Louis

    [br]
    b. 1837 Langon, Bordeaux, France
    d. 19 August 1920 Agen, France
    [br]
    French scientist and pioneer of colour photography.
    [br]
    The son of a tax collector, Ducos du Hauron began researches into colour photography soon after the publication of Clerk Maxwell's experiment in 1861. In a communication sent in 1862 for presentation at the Académie des Sciences, but which was never read, he outlined a number of methods for photography of colours. Subsequently, in his book Les Couleurs en photographie, published in 1869, he outlined most of the principles of additive and subtractive colour photography that were later actually used. He covered additive processes, developed from Clerk Maxwell's demonstrations, and subtractive processes which could yield prints. At the time, the photographic materials available prevented the processes from being employed effectively. The design of his Chromoscope, in which transparent reflectors could be used to superimpose three additive images, was sound, however, and formed the basis of a number of later devices. He also proposed an additive system based on the use of a screen of fine red, yellow and blue lines, through which the photograph was taken and viewed. The lines blended additively when seen from a certain distance. Many years later, in 1907, Ducos du Hauron was to use this principle in an early commercial screen-plate process, Omnicolore. With his brother Alcide, he published a further work in 1878, Photographie des Couleurs, which described some more-practical subtractive processes. A few prints made at this time still survive and they are remarkably good for the period. In a French patent of 1895 he described yet another method for colour photography. His "polyfolium chromodialytique" involved a multiple-layer package of separate red-, green-and blue-sensitive materials and filters, which with a single exposure would analyse the scene in terms of the three primary colours. The individual layers would be separated for subsequent processing and printing. In a refined form, this is the principle behind modern colour films. In 1891 he patented and demonstrated the anaglyph method of stereoscopy, using superimposed red and green left and right eye images viewed through green and red filters. Ducos du Hauron's remarkable achievement was to propose theories of virtually all the basic methods of colour photography at a time when photographic materials were not adequate for the purpose of proving them correct. For his work on colour photography he was awarded the Progress Medal of the Royal Photographic Society in 1900, but despite his major contributions to colour photography he remained in poverty for much of his later life.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London. J.S.Friedman, 1944, History of Colour Photography, Boston. E.J.Wall, 1925, The History of Three-Colour Photography, Boston. See also Cros, Charles.
    BC

    Biographical history of technology > Ducos du Hauron, Arthur-Louis

  • 14 Godowsky, Leopold Jr

    [br]
    b. 27 May 1900 Chicago, Illinois, USA d. 1983
    [br]
    American musician and photographic experimenter whose researches, with those of his colleague Mannes, led to the introduction of the first commercial tripack colour film, Kodachrome.
    [br]
    Both from distinguished musical families, Godowsky and Leopold Damrosch Mannes met at Riverdale School in New York in 1916, and shared an interest in photography. They began experiments in methods of additive colour photography, gaining a patent for a three-colour projector. Godowsky went to the University of California to study chemistry, physics and mathematics, while working as a professional violinist; Mannes, a pianist, went to Harvard to study music and physics. They kept in touch, and after graduating they joined up in New York, working as musicians and experimenting in colour photography in their spare time.
    Initially working in kitchens and bathrooms, they succeeded in creating a two-layer colour photographic plate, with emulsions separately sensitized to parts of the spectrum, and patented the process. This achievement was all the greater since they were unable to make the emulsions themselves and had to resort to buying commercial photographic plates so that they could scrape off the emulsions, remelt them and coat their experimental materials. In 1922 their work came to the attention of C.E.K. Mees, the leading photographic scientist and Director of the Eastman Kodak Research Laboratory in Rochester, New York. Mees arranged for plates to be coated to their specifications. With a grant from Kuhn, Loeb \& Co. they were able to rent laboratory space. Learning of Rudolf Fischer's early work on dye couplers, they worked to develop a new process incorporating them. Mees saw that their work, however promising, would not develop in an amateur laboratory, and in 1930 he invited them to join the Kodak Research Laboratory, where they arrived on 15 June 1931. Their new colleagues worked on ways of coating multi-layer film, while Mannes and Godowsky worked out a method of separately processing the individual layers in the exposed film. The result was Kodachrome film, the first of the modern integral tripack films, launched on 15 April 1935.
    They remained with Eastman Kodak until December 1939; their work contributed to the later appearance of Ektachrome colour-reversal film and the Kodacolor and Eastman Color negative-positive colour processes. Mannes became the Director of his father's Music Academy in New York, remaining as such until his death in 1964. Godowsky returned to Westport, Connecticut, and continued to study mathematics at Columbia University. He carried out photographic research un his private laboratory up until the time of his death in 1983.
    [br]
    Further Reading
    C.E.K.Mees, 1961, From Dry Plates to Ektachrome Film, New York.
    BC

    Biographical history of technology > Godowsky, Leopold Jr

  • 15 Goucher, John

    [br]
    b. c.1831 Woodsetts, Yorkshire, England
    d. unknown
    [br]
    English engineer and inventor of the rubbing bars used on threshing machines and combine harvesters.
    [br]
    John Goucher was the son of a Yorkshire farmer who began his employed life as a carpenter. In 1851, at the age of 20, he was living on the farm of his father and employing four labourers. He developed and patented a means of wrapping wire around the individual bars of a threshing machine drum in such a way that grooves were formed in them. These grooves allowed the threshed grain to pass through without being crushed or otherwise damaged.
    [br]
    Bibliography
    Other patents credited to him range from devices for the propelling of ships in 1854, beaters for threshing machines in 1848, 1856, and again in 1861, stacking corn and other crops in the same year, improvements to steam boilers in 1863, for preserving life in water in 1867, threshing machines in 1873 and 1874, steam engines in 1884, and threshing machines in 1885.
    AP

    Biographical history of technology > Goucher, John

  • 16 Gropius, Walter Adolf

    [br]
    b. 18 May 1883 Berlin, Germany
    d. 5 July 1969 Boston, USA
    [br]
    German co-founder of the modern movement of architecture.
    [br]
    A year after he began practice as an architect, Gropius was responsible for the pace-setting Fagus shoe-last factory at Alfeld-an-der-Leine in Germany, one of the few of his buildings to survive the Second World War. Today the building does not appear unusual, but in 1911 it was a revolutionary prototype, heralding the glass curtain walled method of non-load-bearing cladding that later became ubiquitous. Made from glass, steel and reinforced concrete, this factory initiated a new concept, that of the International school of modern architecture.
    In 1919 Gropius was appointed to head the new School of Art and Design at Weimar, the Staatliches Bauhaus. The school had been formed by an amalgamation of the Grand Ducal schools of fine and applied arts founded in 1906. Here Gropius put into practice his strongly held views and he was so successful that this small college, which trained only a few hundred students in the limited years of its existence, became world famous, attracting artists, architects and students of quality from all over Europe.
    Gropius's idea was to set up an institution where students of all the arts and crafts could work together and learn from one another. He abhorred the artificial barriers that had come to exist between artists and craftsmen and saw them all as interdependent. He felt that manual dexterity was as essential as creative design. Every Bauhaus student, whatever the individual's field of work or talent, took the same original workshop training. When qualified they were able to understand and supervise all the aesthetic and constructional processes that made up the scope of their work.
    In 1924, because of political changes, the Weimar Bauhaus was closed, but Gropius was invited to go to Dessau to re-establish it in a new purpose-built school which he designed. This group of buildings became a prototype that designers of the new architectural form emulated. Gropius left the Bauhaus in 1928, only a few years before it was finally closed due to the growth of National Socialism. He moved to England in 1934, but because of a lack of architectural opportunities and encouragement he continued on his way to the USA, where he headed the Department of Architecture at Harvard University's Graduate School of Design from 1937 to 1952. After his retirement from there Gropius formed the Architect's Collaborative and, working with other architects such as Marcel Breuer and Pietro Belluschi, designed a number of buildings (for example, the US Embassy in Athens (1960) and the Pan Am Building in New York (1963)).
    [br]
    Bibliography
    1984, Scope of Total Architecture, Allen \& Unwin.
    Further Reading
    N.Pevsner, 1936, Pioneers of the Modern Movement: From William Morris to Walter Gropius, Penguin.
    C.Jenck, 1973, Modern Movements in Architecture, Penguin.
    H.Probst and C.Shädlich, 1988, Walter Gropius, Berlin: Ernst \& Son.
    DY

    Biographical history of technology > Gropius, Walter Adolf

  • 17 Hopkinson, John

    [br]
    b. 27 July 1849 Manchester, England
    d. 27 August 1898 Petite Dent de Veisivi, Switzerland
    [br]
    English mathematician and electrical engineer who laid the foundations of electrical machine design.
    [br]
    After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.
    [br]
    Principal Honours and Distinctions
    FRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.
    Bibliography
    7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).
    1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.
    Further Reading
    J.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).
    —1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.
    GW

    Biographical history of technology > Hopkinson, John

  • 18 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 19 Meritens, Baron Auguste de

    [br]
    b. 1834
    d. 1898 Pontoise, France
    [br]
    French engineer who improved the design of magneto-electric generators successfully used for lighthouse illumination.
    [br]
    Founding the firm of Messrs A. de Meritens of Paris to build magneto-electric generators for electric arc lighting, de Meritens revised the arrangement of the Holmes and Alliance machines. By employing a distributed rotor winding on laminated cores in place of individual bobbins, the wave-form was improved and a continuous output was achieved, as distinct from a series of short-duration pulses. The rotor windings were carried on the periphery of spoked wheels which revolved below the poles of stationary compound permanent magnets. These generators came to prominence in 1880; in France they quickly replaced the Alliance machines in lighthouses, and Trinity House also installed them in Britain. Two examples remained in continuous service at the Lizard lighthouse in Cornwall from 1881 to 1950, and one still survives there as an exhibit. Before being installed, this machine was shown at the Paris Electrical Exhibition of 1881. An electric candle invented by de Meritens was a variation on that of Jablochkoff and he is credited with being the first to suggest the use of a carbon electrode as one pole for electric-arc welding, with the metal to be welded serving as the other pole. Baron de Meritens died tragically in great poverty.
    [br]
    Bibliography
    April 1878, French patent no. 123,766 (improved magneto-electric generator). 17 September 1878, British patent no. 3,658 (improved magneto-electric generator).
    Further Reading
    Engineering (1878) 28:372 (a description of the original de Meritens machine).
    J.Hopkinson, 1886–7, Proceedings of the Institution of Civil Engineers 87(1):243–60 (a report on machines in service).
    GW

    Biographical history of technology > Meritens, Baron Auguste de

  • 20 Mies van der Rohe, Ludwig

    [br]
    b. 27 March 1886 Aachen, Germany
    d. 17 August 1969 Chicago, USA
    [br]
    German architect, third of the great trio of long-lived, second-generation modernists who established the international style in the inter-war years and brought it to maturity (See Jeanneret (Le Corbusier) and Gropius).
    [br]
    Mies van der Rohe was the son of a stonemason and his early constructional training came from his father. As a young man he gained experience of the modern school from study of the architecture of the earlier leaders, notably Peter Behrens, Hendrik Berlage and Frank Lloyd Wright. He commenced architectural practice in 1913 and soon after the First World War was establishing his own version of modern architecture. His building materials were always of the highest quality, of marble, stone, glass and, especially, steel. He stripped his designs of all extraneous decoration: more than any of his contemporaries he followed the theme of elegance, functionalism and an ascetic concentration on essentials. He believed that architectural design should not look backwards but should reflect the contemporary achievement of advanced technology in both its construction and the materials used, and he began early in his career to act upon these beliefs. Typical was his early concrete and glass office building of 1922, after which, more importantly, came his designs for the German Pavilion at the Barcelona Exposition of 1929. These designs included his famous Barcelona chair, made from chrome steel and leather in a geometrical design, one which has survived as a classic and is still in production. Another milestone was his Tugendhat House in Brno (1930), a long, low, rectilinear structure in glass and steel that set a pattern for many later buildings of this type. In 1930 Mies followed his colleagues as third Director of the Bauhaus, but due to the rise of National Socialism in Germany it was closed in 1933. He finally left Germany for the USA in 1937, and the following year he took up his post as Director of Architecture in Chicago at what is now known as the Illinois Institute of Technology and where he remained for twenty years. In America Mies van der Rohe continued to develop his work upon his original thesis. His buildings are always recognizable for their elegance, fine proportions, high-quality materials and clean, geometrical forms; nearly all are of glass and steel in rectangular shapes. The structure and design evolved according to the individual needs of each commission, and there were three fundamental types of design. One type was the single or grouped high-rise tower, built for apartments for the wealthy, as in his Lake Shore Drive Apartments in Chicago (1948–51), or for city-centre offices, as in his Seagram Building in New York (1954–8, with Philip Johnson) or his Chicago Federal Centre (1964). Another form was the long, low rectangle based upon the earlier Tugendhat House and seen again in the New National Gallery in Berlin (1965–8). Third, there were the grouped schemes when the commission called for buildings of varied purpose on a single, large site. Here Mies van der Rohe achieved a variety and interest in the different shapes and heights of buildings set out in spatial harmony of landscape. Some examples of this type of scheme were housing estates (Lafayette Park Housing Development in Detroit, 1955–6), while others were for educational, commercial or shopping requirements, as at the Toronto Dominion Centre (1963–9).
    [br]
    Further Reading
    L.Hilbersheimer, 1956, Ludwig Mies van der Rohe, Chicago: P.Theobald.
    Peter Blake, 1960, Mies van der Rohe, Architecture and Structure, Penguin, Pelican. Arthur Drexler, 1960, Ludwig Mies van der Rohe, London: Mayflower.
    Philip Johnson, 1978, Mies van der Rohe, Seeker and Warburg.
    DY

    Biographical history of technology > Mies van der Rohe, Ludwig

См. также в других словарях:

  • Subject-Subject Consciousness — Subject SUBJECT consciousness, a concept proposed by Harry Hay believed by Hay to be queer people s unique perspective on the world. Hay saw heterosexual society existing in a subject object dynamic; where men, who had the culturally acceptable… …   Wikipedia

  • Individual — As commonly used, individual refers to a person or to any specific object in a collection. In the 15th century and earlier, and also today within the fields of statistics and metaphysics, individual means indivisible , typically describing any… …   Wikipedia

  • Individual income tax in Singapore — forms part of two main sources of Income tax, the other being corporate taxes on companies. Payable on an annual bases, it is currently based on the progressive tax system (for local residents), with taxes ranging from 0% to 20% since Year of… …   Wikipedia

  • Individual, Individuality — • An individual being is defined by St. Thomas as quod est in se indivisum, ab aliis vero divisum (a being undivided in itself but separated from other beings) Catholic Encyclopedia. Kevin Knight. 2006. Individual, Individuality      …   Catholic encyclopedia

  • Individual psychology — is a term used specifically to refer to the psychological method or science founded by the Viennese psychologist Alfred Adler. The English edition of Adler s work on the subject (1925) is a collection of papers and lectures given mainly in 1912… …   Wikipedia

  • subject — n 1 *citizen, national Antonyms: sovereign 2 Subject, matter, subject matter, argument, topic, text, theme, motive, motif, leitmotiv can mean the basic idea or the principal object of thought or attention in a discourse or artistic composition.… …   New Dictionary of Synonyms

  • subject — subject, the subject A term used in preference to alternatives such as ‘actor’ and ‘individual’ by writers in the structuralist tradition. Its use indicates a rejection of what such writers regard as the humanist assumptions carried by the… …   Dictionary of sociology

  • subject — [sub′jikt, sub′jekt΄; ] for v. [ səb jekt′] adj. [ME suget < OFr < L subjectus, pp. of subjicere, to place under, put under, subject < sub , under + jacere, to throw: see JET1] 1. under the authority or control of, or owing allegiance to …   English World dictionary

  • Individual Savings Account — An Individual Savings Account (ISA; pronounced /ˈaɪsə/) is a financial product available to residents in the United Kingdom. It is designed for the purpose of investment and savings with a favourable tax status. Money is contributed from… …   Wikipedia

  • Individual Retirement Account — An Individual Retirement Account (or IRA) is a retirement plan account that provides some tax advantages for retirement savings in the United States.Legal basisThe individual retirement account and related vehicles (see Definitions) were created… …   Wikipedia

  • Individual augmentee — An Individual Augmentee is a United States military member assigned to a unit for the purpose of filling in for, or augmenting, members of that unit. Individual Augmentees or IAs are differentiated from existing members of that unit by the fact… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»